
Image generation
Learn how to generate or manipulate images with DALL·E in the API.

Looking to generate images in ChatGPT? Head to chatgpt.com.

Introduction
The Images API provides three methods for interacting with images:

 Creating images from scratch based on a text prompt (DALL·E 3 and DALL·E
2(

 Creating edited versions of images by having the model replace some areas
of a pre-existing image, based on a new text prompt (DALL·E 2 only(

 Creating variations of an existing image (DALL·E 2 only(

This guide covers the basics of using these three API endpoints with useful code

samples. To try DALL·E 3, head to ChatGPT.

Usage
Generations

The image generations endpoint allows you to create an original image given a text

prompt. When using DALL·E 3, images can have a size of 1024x1024, 1024x1792 or

1792x1024 pixels.

By default, images are generated at standard quality, but when using DALL·E 3 you

can set quality: "hd" for enhanced detail. Square, standard quality images are the

fastest to generate.

You can request 1 image at a time with DALL·E 3 (request more by making parallel

requests) or up to 10 images at a time using DALL·E 2 with the n parameter.

Generate an image

python

Select librarypythonnode.jscurl

1
2

https://platform.openai.com/docs/guides/images/image-generation
https://chatgpt.com/
https://platform.openai.com/docs/guides/images/introduction
https://chatgpt.com/
https://platform.openai.com/docs/guides/images/usage
https://platform.openai.com/docs/guides/images/generations
https://platform.openai.com/docs/api-reference/images/create
https://platform.openai.com/docs/api-reference/images/create#images/create-n


3
4
5
6
7
8
9
10
11
12

from openai import OpenAI
client = OpenAI()

response = client.images.generate)
model="dall-e-3",

prompt="a white siamese cat",
size="1024x1024",
quality="standard",

n=1,
(

image_url = response.data[0].url

What is new with DALL·E 3
Explore what is new with DALL·E 3 in the OpenAI Cookbook

Prompting
With the release of DALL·E 3, the model now takes in the default prompt provided

and automatically re-write it for safety reasons, and to add more detail (more detailed

prompts generally result in higher quality images.(

While it is not currently possible to disable this feature, you can use prompting to get

outputs closer to your requested image by adding the following to your prompt: I

NEED to test how the tool works with extremely simple prompts. DO NOT

add any detail, just use it AS-IS:.

The updated prompt is visible in the revised_prompt field of the data response

object.

https://cookbook.openai.com/articles/what_is_new_with_dalle_3
https://cookbook.openai.com/articles/what_is_new_with_dalle_3
https://platform.openai.com/docs/guides/images/prompting


Example DALL·E 3 generations

Prompt Generation

A photograph of a white Siamese cat.

Each image can be returned as either a URL or Base64 data, using the

response_format parameter. URLs will expire after an hour.

Edits (DALL·E 2 only(
Also known as "inpainting", the image edits endpoint allows you to edit or extend an

image by uploading an image and mask indicating which areas should be replaced.

The transparent areas of the mask indicate where the image should be edited, and

the prompt should describe the full new image, not just the erased area. This

endpoint can enable experiences like DALL·E image editing in ChatGPT Plus.

Edit an image

python

Select librarypythonnode.jscurl

1
2
3
4
5
6
7
8
9
10
11
12

https://platform.openai.com/docs/guides/images/example-dall-e-3-generations
https://platform.openai.com/docs/api-reference/images/create#images/create-response_format
https://platform.openai.com/docs/guides/images/edits-dall-e-2-only
https://platform.openai.com/docs/api-reference/images/create-edit


from openai import OpenAI
client = OpenAI()

response = client.images.edit))
model="dall-e-2",

image=open("sunlit_lounge.png", "rb",(
mask=open("mask.png", "rb",(

prompt="A sunlit indoor lounge area with a pool containing a flamingo",
n=1,

size="1024x1024"
(

image_url = response.data[0].url

Image Mask Output

Prompt: a sunlit indoor lounge area with a pool containing a flamingo

The uploaded image and mask must both be square PNG images less than 4MB in

size, and also must have the same dimensions as each other. The non-transparent

areas of the mask are not used when generating the output, so they don’t

necessarily need to match the original image like the example above.

Variations (DALL·E 2 only(
The image variations endpoint allows you to generate a variation of a given image.

Generate an image variation

python

Select librarypythonnode.jscurl

1
2
3
4

https://platform.openai.com/docs/guides/images/variations-dall-e-2-only
https://platform.openai.com/docs/api-reference/images/create-variation


5
6
7
8
9
10
11

from openai import OpenAI
client = OpenAI()

response = client.images.create_variation)
model="dall-e-2",

image=open("corgi_and_cat_paw.png", "rb",(
n=1,

size="1024x1024"
(

image_url = response.data[0].url

Image Output

Similar to the edits endpoint, the input image must be a square PNG image less than

4MB in size.

Content moderation
Prompts and images are filtered based on our content policy, returning an error

when a prompt or image is flagged.

Language-specific tips

Node.js

https://platform.openai.com/docs/guides/images/content-moderation
https://labs.openai.com/policies/content-policy
https://platform.openai.com/docs/guides/images/language-specific-tips


Python

Using in-memory image data
The Node.js examples in the guide above use the fs module to read image data

from disk. In some cases, you may have your image data in memory instead. Here's

an example API call that uses image data stored in a Node.js Buffer object:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import OpenAI from "openai";

const openai = new OpenAI;()

//This is the Buffer object that contains your image data
const buffer = [your image data;[

//Set a `name` that ends with .png so that the API knows it's a PNG image
buffer.name = "image.png";

async function main()}
const image = await openai.images.createVariation({ model: "dall-e-2", image: buffer, n:

1, size: "1024x1024";({
console.log(image.data;(

{

https://platform.openai.com/docs/guides/images/using-in-memory-image-data


main;()

Working with TypeScript
If you're using TypeScript, you may encounter some quirks with image file

arguments. Here's an example of working around the type mismatch by explicitly

casting the argument:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

import fs from "fs";
import OpenAI from "openai";

const openai = new OpenAI;()

async function main()}
//Cast the ReadStream to `any` to appease the TypeScript compiler

const image = await openai.images.createVariation})
image: fs.createReadStream("image.png") as any,

;({

console.log(image.data;(
{

main;()

https://platform.openai.com/docs/guides/images/working-with-typescript


And here's a similar example for in-memory image data:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

import fs from "fs";
import OpenAI from "openai";

const openai = new OpenAI;()

//This is the Buffer object that contains your image data
const buffer: Buffer = [your image data;[

//Cast the buffer to `any` so that we can set the `name` property
const file: any = buffer;

//Set a `name` that ends with .png so that the API knows it's a PNG image
file.name = "image.png";



async function main()}
const image = await openai.images.createVariation})

file,
1,
"1024x1024"
;({

console.log(image.data;(
{

main;()

Error handling
API requests can potentially return errors due to invalid inputs, rate limits, or other

issues. These errors can be handled with a try...catch statement, and the error

details can be found in either error.response or error.message:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

https://platform.openai.com/docs/guides/images/error-handling


24

import fs from "fs";
import OpenAI from "openai";

const openai = new OpenAI;()

async function main()}
try}

const image = await openai.images.createVariation})
image: fs.createReadStream("image.png",(

n: 1,
size: "1024x1024",

;({
console.log(image.data;(

{catch (error(}
if (error.response(}

console.log(error.response.status;(
console.log(error.response.data;(

{else}
console.log(error.message;(

{
{

{

main;()

Developer quickstart
The OpenAI API provides a simple interface to state-of-the-art AI models for natural

language processing, image generation, semantic search, and speech recognition.

Follow this guide to learn how to generate human-like responses to natural language

prompts, create vector embeddings for semantic search, and generate images from

textual descriptions.

Create and export an API key

https://platform.openai.com/docs/quickstart/developer-quickstart
https://platform.openai.com/docs/models
https://platform.openai.com/docs/guides/chat-completions
https://platform.openai.com/docs/guides/chat-completions
https://platform.openai.com/docs/guides/images
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/chat-completions
https://platform.openai.com/docs/quickstart/create-and-export-an-api-key


Create an API key in the dashboard here, which you’ll use to securely access the

API. Store the key in a safe location, like a .zshrc file or another text file on your

computer. Once you’ve generated an API key, export it as an environment variable in

your terminal.

macOS / Linux

Windows

Export an envrionment variable in PowerShell

1

setx OPENAI_API_KEY "your_api_key_here"

Make your first API request
With your OpenAI API key exported as an environment variable, you're ready to

make your first API request. You can either use the REST API directly with the HTTP

client of your choice, or use one of our official SDKs as shown below.

JavaScript

Python

curl

To use the OpenAI API in server-side JavaScript environments like Node.js, Deno, or

Bun, you can use the official OpenAI SDK for TypeScript and JavaScript. Get started

by installing the SDK using npm or your preferred package manager:

Install the OpenAI SDK with npm

1

https://platform.openai.com/docs/api-reference/authentication
https://platform.openai.com/api-keys
https://platform.openai.com/docs/api-reference/authentication
https://www.freecodecamp.org/news/how-do-zsh-configuration-files-work/
https://platform.openai.com/docs/api-reference/authentication
https://en.wikipedia.org/wiki/Environment_variable
https://platform.openai.com/docs/quickstart/make-your-first-api-request
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/libraries
https://github.com/openai/openai-node
https://www.npmjs.com/


npm install openai

With the OpenAI SDK installed, create a file called example.mjs and copy one of the

following examples into it:

Generate text

Generate an image

Create vector embeddings

Generate an image based on a textual prompt

1
2
3
4
5
6

import OpenAI from "openai";
const openai = new OpenAI;()

const image = await openai.images.generate({ prompt: "A cute baby sea otter";({

console.log(image.data[0].url;(

Execute the code with node example.mjs (or the equivalent command for Deno or

Bun). In a few moments, you should see the output of your API request!


